
Dispersion of heavy particle sets in isotropic turbulence using kinematic simulation

A. Abou El-Azm Aly and F. Nicolleau*
Department of Mechanical Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom

�Received 29 January 2008; published 22 July 2008�

We study the dispersion of heavy particle sets, triangle and tetrahedron, in an isotropic and incompressible
three-dimensional turbulent flow. The turbulent velocity field is generated using kinematic simulation, which
allows us to vary the inertial range and to reach large values of the Reynolds numbers. We study the time
evolution of the parameters characterizing the geometry, the size and shape of the triangle and tetrahedron. The
Lagrangian correlations of the sets’ size, area or volume, are also studied. Different initial separations between
particles, inertial ranges, Stokes numbers, and particle drift velocities are considered. We found that the
Reynolds number has no effect on the shape evolution of the triangle and tetrahedron provided that the initial
distance between the particles is larger than the Kolmogorov length scale.
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I. INTRODUCTION

The dispersion of heavy particles is different from that of
the carrier fluid as the particles’ densities are larger than that
of the fluid particles. Such situations are the norm in indus-
trial applications, for example with multiphase processes oc-
curring in combustion. The dispersion process is character-
ized by both the properties of the heavy particles and the
properties of the turbulent fluid that carries the particles, and
there are forces acting on the particle because of the relative
motion between the particle and the turbulent flow field.
These effects cause the particle’s velocity to be different
from that of the surrounding fluid. Therefore, the trajectory
of the heavy particle is different from that of the fluid ele-
ment. In this paper we deal with isolated particles which do
not interact with each other. Furthermore, we make the as-
sumption that their presence does not perturb the turbulent
flow. One question that has not received much attention so
far concerns the effect of turbulence on the shape and size of
sets of heavy particles initially forming an equilateral tri-
angle or tetrahedron. This question has received some an-
swers in the case of diffusion of fluid elements �1,2�. We
propose here to generalize that work to particles with inertia
in the presence of gravity. The statistical properties of sets of
heavy particles are important in many research domains such
as the dispersion of plankton on ocean surfaces and the for-
mation of warm clouds, sprays, or particulate pollutants. The
importance of following the evolution of n particles in tur-
bulent flows was emphasized in �3� where higher-order struc-
ture functions were considered as a way of connecting the
scaling properties of turbulence to the spatial structure of the
flow. In �4�, the statistics of geometrical properties of clusters
of three and four material particles were investigated in
three-dimensional turbulent flows either by using direct nu-
merical simulation �DNS� at a moderate Reynolds number
based on the Taylor microscale �Re�=82� or by using a
simple phenomenological model of Lagrangian kinematics.
In �1�, the geometrical aspects of Lagrangian dispersion and
the shape distortion of small triangles were studied in an

experimental two-dimensional turbulent flow with an inverse
energy cascade regime with a k−5/3 spectrum. The experi-
mental results provided strong evidence that the distortion of
the triangle shape depends on its initial size. The dispersion
of a three-particle set in a two-dimensional turbulent flow
was studied by �5� with the help of kinematic simulation
�KS�. Two-dimensional KSs were made for direct compari-
sons with the DNS results and the shape distribution of tri-
angles advected in turbulence was investigated at high Re.

In �6�, experimental and numerical studies of the disper-
sion of particle triplets are carried out in turbulent fluid mo-
tion with a free surface. The surface compressibility is found
to change the stretching of triangular structures on the sur-
face. The experimental and simulation results there show that
the values of the shape factor are below the Gaussian ones.
KSs for the time being are limited to incompressible flows
�though some attempts are made at understanding the com-
pressibility effect in �7��. More KSs were done in �2�, ex-
tending the studies of �5�. In particular, the effect of the Re,
the initial separation, and the unsteadiness term modeling on
three-and four-particle sets advected in an isotropic incom-
pressible three-dimensional turbulent flow was investigated.
In the present paper, we further extend the study of �2� to the
dispersion of three- and four-heavy-particle sets in turbulent
flows. In particular, we analyze the effect of the particle’s
inertia and of gravity on the time evolution of the set shape.

The numerical method we use to generate the turbulent
flow, the heavy particle equation of motion, and the param-
etrization used for characterizing the size and the shape of
the heavy particle sets are introduced in Sec. II. The results
for the dispersion of three-heavy-particle sets are presented
in Sec. III and for the dispersion of four-heavy-particle sets
in Sec. IV. We conclude the paper in Sec. V.

II. METHOD

A. Kinematic simulation technique

In order to study turbulent dispersion it may be sufficient
to simulate kinematically the turbulent flow in which the
particles disperse, without solving explicitly the dynamical
equations �8,9�. Simulating turbulence kinematically using*F.Nicolleau@Sheffield.ac.uk
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Fourier modes is called kinematic simulation. This technique
has been able to reproduce very well some of the Lagrangian
properties �10,11�.

The computational simplicity of KS allows one to con-
sider large inertial subranges and Re. KSs are a powerful tool
to study the problem of dispersion of heavy particle sets in
turbulent flows. With this method, the computational task
reduces to the calculation of the trajectory of each particle
placed in the turbulent field; each trajectory is, for a given
initial condition, a solution of the differential equation

dx

dt
= uE�x,t� , �1�

where uE is the Eulerian velocity modeled by KS.
The trajectories are independent of each other and calcu-

lated using the fourth-order predictor-corrector method
�Adams-Bashforth-Moulton� in which the fourth-order
Runge-Kutta scheme is used to compute the first three points
needed to initiate the Adams-Bashforth method. This kind of
computation does not require the storage of a lot of data with
very large tables, as with direct numerical simulation.

As in �2,12,13�, the three-dimensional KS turbulent veloc-
ity field used in this paper is a truncated Fourier series, i.e.,
the sum of N random Fourier modes:

u�x,t� = �
n=1

N

�an � k̂n�cos�kn · x + �nt�

+ �bn � k̂n�sin�kn · x + �nt� , �2�

where N is the number of Fourier modes, and k̂n is a random

unit vector defined as k̂n=kn / �kn� so that

kn = �kn�k̂n = �kn��sin �n cos �n

sin �n sin �n

cos �n
� , �3�

where �n� �0,�� and �n� �0,2�� are picked randomly for
each mode and realization so that the random direction for
the nth wave mode is independent of the directions of all the
other modes. For the sake of completeness we just mention
�nt, the unsteadiness term. The vectors an and bn are random
uncorrelated vectors distributed under the constraint that they

are normal to k̂n, and their amplitudes have been chosen

according to ��an� k̂n��2= ��bn� k̂n��2=2E�k��kn. To ensure
that the velocity field is incompressible �� ·u=0�, the Fou-

rier coefficients are written as �an� k̂n� and �bn� k̂n�. The
value of �kn� has to be chosen by discretizing the wave num-
ber space into a finite number N of modes. The geometric
distribution

kn = k1	 kN

k1

�n−1�/�N−1�

�4�

is chosen because it leads to equally spaced energy shells for
ln�k�. The wave number increment �kn is defined as follows:

�k1 =
�k2 − k1�

2
for n = 1,

�kn =
�kn+1 − kn−1�

2
for n � �2,kN−1� ,

�kN =
�kN − kN−1�

2
for n = kN. �5�

In this study, we use an energy spectrum characterized by a
power law with an exponent of −5 /3 which does not change
with time �nondecaying turbulence�:

E�kn� = Ck	
2/3kn

−5/3 for k1 
 kn 
 kN, �6�

where Ck is the Kolmogorov constant �Ck=1.5� and 	 the
dissipation rate of energy per unit mass. Outside the range
�k1 ,kN�, E�k�=0 and the total kinetic energy E is obtained by
integrating the energy spectrum over the total range of wave
numbers,

E = �
k1

kN

E�k�dk . �7�

The rms of the turbulent velocity fluctuation is

u� =�2

3
�

k1

kN

E�kn�dk . �8�

The integral length scale of the isotropic turbulence is de-
fined as follows:

L =
3�

4

�
k1

kN

k−1E�kn�dk

�
k1

kN

E�kn�dk

. �9�

The Kolmogorov length scale is defined as �=2� /kN. The
ratio between the integral and Kolmogorov length scales is
L /�=kN /k1, which is used to determine the inertial range
and the associated Re: Re= �L /��4/3= �kN /k1�4/3. The pulsa-
tion �n in �2� determines the unsteadiness that can be asso-
ciated with the nth wave mode. It has been shown in �10�
that in three-dimensional isotropic KSs for two-particle dif-
fusion, most of the statistical properties are insensitive to the
unsteadiness parameter’s value. In accordance with these re-
sults we have not added any unsteadiness term ��n=0� to our
KS simulations.

One of the important time scales existing in the turbulent
flow is the eddy turnover time, which corresponds to the
integral length scale L. The turnover time is defined as td
=L /u�. The other important time scale is the Kolmogorov
time scale, which corresponds to the Kolmogorov length
scale; it is defined as t�= td�� /L�2/3. The time step used for
the KS is determined by tracking the motion of fluid ele-
ments down to the smallest scales; it must be smaller than
both the smallest eddy turnover time and the time that a
typical fluid particle would take, on average, to move by a
Kolmogorov length scale. According to �14�, a time step
equal to 0.1t� is small enough to ensure that the results are
independent of the time step.
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B. Heavy particle equation of motion

The complete equation of motion for heavy particles is
still the subject of current research. Depending on the degree
of simplification, it can involve different forces acting on the
particle. These can be, for example, the lift force due to the
nonuniform distribution of the flow field around the particle,
the drag force due to the relative motion between the particle
itself and the surrounding fluid elements, the gravity force,
the buoyancy force, and the force due to the unsteadiness of
the flow.

Let us consider a heavy particle with its center positioned
at xp�t� at time t; it moves with a velocity Vp�t� in a sur-
rounding flow of velocity u�xp , t�. The equation of motion of
a heavy particle derived in �15� can be simplified to the form
used in �16,17�, which reduces the computational cost. In a
frame of reference moving with the center of the particle, the
particle acceleration can be described as follows:

mp
dVp

dt
= mpg − 6�a��Vp�t� − u„xp�t�,t…� , �10�

where mp is the mass of the particle, g the gravity, a the
spherical particle’s radius, and � the dynamic viscosity of
the fluid. Another form of Eq. �10� is

dVp

dt
=

u„xp�t�,t… − Vp�t� + Vd


a
, �11�

where 
a=mp /6�a� is the particle’s aerodynamic response
time and Vd=
ag the particle’s terminal fall velocity or drift
velocity. Because the dispersion is controlled by the large-
scale eddies, the parameters Vd and 
a can be rescaled by the
turbulence rms velocity u� and the largest eddy turnover time
td; we therefore introduce the two usual dimensionless pa-
rameters as follows.

�1� The Stokes number St=
a / td, which expresses the ra-
tio between the particle’s response time and the turbulence
characteristic time. Based on the largest eddy, it measures the
relative importance of the particle inertia. In the limiting case
St=0, the particles with inertia recover the motion of the
fluid particles, whereas for St→� the particles become less
and less influenced by the surrounding velocity field. It is
possible to define another Stokes number based on the Kol-
mogorov time scale as St�=
a / t�. For the sake of complete-
ness we also report that number in Tables I and II. The rela-
tion between these two numbers is St�=St�L /��2/3, so there
are some cases where we varied the ratio �L /�� where St is
constant whereas St� is not. The choice of taking St as our

TABLE I. Different cases for three- and four-heavy-particle sets, introducing the effect of inertia.

Case �0 /� St St� � kN /k1 � u� td Case �0 /� St St� � kN /k1 � u� td

A1 0.09 1 32.47 0 185 3.39�10−2 1 1 K1 16 1 32.47 0 185 3.39�10−2 1 1

B1 0.25 0.2 6.49 0 185 3.39�10−2 1 1 L1 16 2 64.93 0 185 3.39�10−2 1 1

C1 0.25 0.4 12.98 0 185 3.39�10−2 1 1 M1 92.5 0.2 6.49 0 185 3.39�10−2 1 1

D1 0.25 0.8 25.97 0 185 3.39�10−2 1 1 N1 92.5 1 32.47 0 185 3.39�10−2 1 1

E1 0.25 1 32.47 0 185 3.39�10−2 1 1 O1 0.5 1 99.95 0 1000 6.28�10−3 1 1

F1 6 1 32.47 0 185 3.39�10−2 1 1 P1 32 1 99.95 0 1000 6.28�10−3 1 1

G1 16 0.2 6.49 0 185 3.39�10−2 1 1 Q1 500 1 99.95 0 1000 6.28�10−3 1 1

H1 16 0.4 12.98 0 185 3.39�10−2 1 1 R1 1 1 158.66 0 2000 3.14�10−3 1 1

I1 16 0.6 19.47 0 185 3.39�10−2 1 1 S1 64 1 158.66 0 2000 3.14�10−3 1 1

J1 16 0.8 25.97 0 185 3.39�10−2 1 1 T1 1000 1 158.66 0 2000 3.14�10−3 1 1

TABLE II. Different cases for three- and four-heavy-particle sets with gravity effect.

Case �0 /� St St� � kN /k1 � u� td Case �0 /� St St� � kN /k1 � u� td

A2 0.09 0.02 0.649 1 185 3.39�10−2 0.44 2.23 M2 0.5 0.02 1.999 1 1000 6.28�10−3 0.44 2.23

B2 0.25 0.02 0.649 0.2 185 3.39�10−2 1 1 N2 32 0.02 1.999 0.2 1000 6.28�10−3 1 1

C2 0.25 0.02 0.649 0.4 185 3.39�10−2 0.698 1.41 O2 32 0.02 1.999 1 1000 6.28�10−3 0.44 2.23

D2 0.25 0.02 0.649 1 185 3.39�10−2 0.44 2.23 P2 500 0.02 1.999 0.2 1000 6.28�10−3 1 1

E2 0.25 0.02 0.649 2 185 3.39�10−2 0.313 3.146 Q2 500 0.02 1.999 0.8 1000 6.28�10−3 0.485 2.02

F2 6 0.02 0.649 0.2 185 3.39�10−2 1 0.2 R2 500 0.02 1.999 1 1000 6.28�10−3 0.44 2.23

G2 6 0.02 0.649 1 185 3.39�10−2 1 0.2 S2 500 0.02 1.999 2 1000 6.28�10−3 0.313 3.146

H2 92.5 0.02 0.649 0.2 185 3.39�10−2 1 0.2 T2 1 0.02 3.173 1 2000 3.14�10−3 0.44 2.23

I2 92.5 0.02 0.649 0.4 185 3.39�10−2 0.698 1.41 U2 64 0.02 3.173 0.2 2000 3.14�10−3 1 1

J2 92.5 0.02 0.649 0.8 185 3.39�10−2 0.485 2.02 V2 64 0.02 3.173 1 2000 3.14�10−3 0.44 2.23

K2 92.5 0.02 0.649 1 185 3.39�10−2 0.44 2.23 W2 1000 0.02 3.173 0.2 2000 3.14�10−3 1 1

L2 92.5 0.02 0.649 2 185 3.39�10−2 0.313 3.146 X2 1000 0.02 3.173 1 2000 3.14�10−3 0.44 2.23
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reference is dictated by previous results showing that in most
situations the relevant ratio is L /�0. That is, provided that
�0��, � �or Re� does not matter �2�.

�2� The drift velocity parameter �=Vd /u�, which is the
ratio between the particle’s drift velocity and the turbulence
rms velocity.

For each of our simulations, the statistics were obtained
by taking an ensemble average over 4000 realizations of the
flow. We tried different numbers of realizations and checked
that statistics and the different trends we observe do not
change after 3000 realizations. All simulations reported here
were performed using 200 Fourier modes �N=200�.

C. Heavy particle set parametrization

In this section, three- and four-heavy-particle set param-
etrizations are introduced in order to characterize the size
and shape distortion in these sets.

1. Three-particle set

Three particles form a triangle with vertices located at X1,
X2, and X3 �see, e.g., Fig. 1 in �2��. The initial positions of
the particles are chosen randomly in each realization. In
practice, the initial position of the first particle is chosen
randomly, then the other particles’ positions are calculated
relative to the first particle. The initial separation between
any two particles is set to �0=n� where n varies from 0.25
to 1000 depending on the choice of the inertial subrange, and
for more randomness the initial position arrangement is ro-
tated by a random angle in each realization. The evolution of
the size and shape of the three-particle set is described using
Euler’s parametrizations as in �1,4�.

For the size variation, three reduced coordinates are de-
fined as follows: �0= �X1+X2+X3� /2, �1= �X2−X1� /�2, and
�2= �2X3−X2−X1� /�6. Because of the homogeneity of the
velocity field and initial distributions of the particles, the
Lagrangian statistics are independent of the center of mass
�0. The radius of gyration, which is used to characterize the
overall size of the triangle, is defined as R2=�i=1

2 �i
2=�1

2+�2
2

= �r12
2 +r23

2 +r31
2 � /3, where rij =X j −Xi is the triangle side

length. The triangle area is defined as A= ��1��2�.
For the shape variation as in �4�, the “moment-of-inertia-

like” tensor is introduced as follows:

gab = �
i=1

2

�i
a�i

b, �12�

where �i
a is the a component of the vector �i. For three-

dimensional velocity fields, there are three eigenvalues gi of
the moment of inertia matrix I=��T, where g1�g2�g3, that
describe the spatial extension of the triangle in the three-
dimensional turbulence. The triangle continuously experi-
ences dilatation, rotation, and translation during its evolution
in the turbulent flow. Its shape varies continuously; this evo-
lution can be quantified with I2, which is defined as the ratio
between g2 and R2,

I2 =
g2

R2 . �13�

It can be shown that 0
 I2
1 /2 an equilateral triangle cor-
responds to I2=1 /2; smaller values of I2 correspond to more
elongated triangles. The other method to describe the shape
of the triangle is to use the parameters W and � �1� which are
defined as follows:

W =
2��1 � �2�

R2 �W � �0,1�� , �14�

� =
1

2
arctan	2�1 · �2

�2
2 − �1

2 
 	0 
 � 

�

6

 . �15�

I2 can be related to the parameter W as I2= �1−�1−W2� /2,
so we will present here only the shape factor W as a measure
for the shape variation for the three-heavy-particle set. The
value W=0 indicates that the three points are aligned,
whereas the value W=1 corresponds to an equilateral tri-
angle; small values of � indicate that the separation between
two particles �e.g., 1 and 2� is much smaller than their sepa-
ration from the third one.

2. Four-particle set

As for three-particle sets and using Euler’s parametriza-
tions as in �4,18�, the tetrahedron’s vertices are located at X1,
X2, X3, and X4 �see, e.g., Fig. 2 in �2��. For the size variation,
a set of four reduced vectors �i is used as follows: �0= �X1
+X2+X3+X4� /2, �1= �X2−X1� /�2, �2= �2X3−X2−X1� /�6,
and �3= �3X4−X3−X2−X1� /�12. The radius of gyration,
which is used to characterize the global size of the tetrahe-
dron, represents the spatial extent of the four-particle set �or
tetrahedron�; it can be defined as R2=��i

2=�1
2+�2

2+�3
2= �r12

2

+r23
2 +r34

2 +r41
2 � /4, where rij = �X j −Xi� is the tetrahedron side

length. The tetrahedron’s volume, which can give the infor-
mation about three-dimensional structure, is defined as V
= �det��1 ,�2 ,�3��.

For the shape variation, the moment-of-inertia-like tensor
is used to characterize the shape of the four-particle set; there
are three eigenvalues g1, g2, and g3 that describe the spatial
extension of the tetrahedron in the three-dimensional turbu-
lence. Here, we choose the shape factor I2

th as a measure for
the shape variation for the four-heavy-particle set, where
“th” stands for the tetrahedron case, in order to introduce a
different notation from that for three particles in the previous
section. g1=g2=g3 corresponds to an isotropic object, g3=0
corresponds to four points that are coplanar, and g2=g3 cor-
responds to a collinear configuration.

3. Evolution of heavy particle sets in turbulent flow

The equation of motion �11� is integrated over 4000 real-
izations of the flow. This number of realizations is enough to
give smooth curves except perhaps for 
��, which by its defi-
nition requires more numerical precision. However, no sig-
nificant difference was observed between 3000 or 4000 real-
izations. The numerical error in the computation of 
�� can
be estimated from the oscillations we observed for t / td�10,
which are below 5%.
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The initial velocity of the heavy particle is set to be the
same as that of the fluid element, Vp�t=0�=u(xp�t=0� ,0)
+Vd. The time step is chosen smaller than the Kolmogorov
time scale. The particle time constant 
a is always chosen
larger than the smallest time scale of the turbulent flow �t��.
Runs have been made for kN /k1=185, 1000, and 2000; in
order to study the effect of Re. In all cases studied here the
unsteadiness term �n is equal to 0. The values of St are set to
0.02, 0.2, 0.4, 0.6, 0.8, 1, and 2, and the values of the particle
drift velocity are set to 0.2, 0.4, 0.8, 1, and 2. All the run
parameters are tabulated in Table I for the study of the inertia
effect and in Table II for the study of the gravity effect.

III. RESULTS FOR THREE-HEAVY-PARTICLE
SETS

In this section, we study the effect of particle inertia and
of gravity on three-heavy-particle sets for different initial
separations and different inertial ranges. The calculations are
made for different particle inertias with and without gravity
�different values of ��.

A. Effect of particle inertia on a three-heavy-particle set

In this section, we limit our study to the effect of the
particle inertia alone. We change St, but remove any effect of
gravity by setting �=0, and study the dispersion of three-
heavy-particle triangles, initially equilateral, moving in an
isotropic turbulence. In the absence of gravity, the particle
dispersion is isotropic; the particles leave the fluid particle
path only because of the inertia effect. The triangle size is
monitored as a function of time by computing the evolution
of 
R2�1/2, where R is the triangle’s radius of gyration. The
changes in the triangle shape are monitored by using the
parameters 
W�, 
I2�, and 
�� as functions of time.

1. Effect of variation of St for a given initial separation

The effect of particle inertia on the dispersion of three-
particle sets in an isotropic turbulent flow is studied for a

given initial separation �0 /�=16, and a zero drift velocity.
The evolution of the size and shape of an initially equilateral
triangle that is immersed in an isotropic turbulent flow are
presented in Figs. 1–3.

The effect of St on the triangle’s size can be observed in
Fig. 1, where the three-heavy-particle set size 
R2� /�2 is
plotted as a function of time and for the sake of comparison
the same result for three-particle diffusion is also plotted. In
Fig. 1, St is varied from 0.2 to 2.

It was shown �13� that when St increases, the time needed
to see the beginning of a Richardson regime is also in-
creased. Before the Richardson regime starts, the particle
separation is small; the particles tend to move following
straight lines. In this regime 
R2� follows the form of a power
law t2 �13�,


R2� = �0
2 + ��V0�2t2, �16�

where �V0 is the particles’ velocity difference at t=0 and �0
is the initial separation between the triangle vertices. This

10
−1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

t/t
η

<
R

2 >
/η

2

diffusion
St = 0.2
St = 0.4
St = 0.6
St = 0.8
St = 1
St = 2 3

2

St

FIG. 1. Triangle’s size normalized by the Kolmogorov length
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in Table I�.
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initial regime prevents the Richardson regime from occur-
ring, and lasts longer when St increases. This is because the
larger the particles’ inertia the longer they remember their
initial state. As the time is increased and reaches the relax-
ation time for the particle, 
a, turbulence comes into play,
producing the Richardson regime where the particles may
follow the celebrated t3 power law �13�.

The effect of St on the triangle’s shape can be seen in
Figs. 2 and 3. The local minimum of the shape factors �
W�,

I2�, and 
��� measures the departure from the asymptotic
value; this departure decreases when St increases. The
small-St sets are experiencing high distortion in shape and
the shape factors rapidly decrease to a local minimum value
before reaching their asymptotic value. When St is increased,
the shape factors reach their asymptotic values, which have
been observed not to depend on St or the initial separations,
at t / td=15, directly without passing through a minimum
value. These asymptotic values are reported in Table III and
compared with �1� whose data correspond to DNS and �2�
whose data were obtained from KS. Our results are close
enough to those of �2� for the conclusion that inertia has no
effect on the asymptotic values for the dispersion of three-
heavy-particle sets for St in the range 0.2
St
2.

As shown in Fig. 4, the local-minimum departure from
the asymptotic value of the shape factors 
W� can be related
to St as follows:

TABLE III. Different values for the shape factors for three-
particle sets.

Coefficient KS KS Experimental, Gaussian

with without two dimensions, values

inertia inertia �2� without inertia �1�


W�asy 0.65 0.66 0.5 0.5


I2�asy 0.165 0.16 0.11 0.107


��asy 0.26 0.26 0.25 0.262
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W�min = A St + B , �17�

where A and B are functions of the initial separation �0 /�
only. Furthermore, A and B can be found as functions of the
initial separation:

A = 0.0065 ln
�0

�
− 0.0685, �18�

B = − 0.0341 ln
�0

�
+ 0.2045; �19�

then


W�min = �0.0065 ln��0/�� − 0.0685�St

+ �− 0.0341 ln��0/�� + 0.2045� . �20�

This equation contains the effect of St and of the initial sepa-
ration on the shape factor of the three-heavy-particle sets.

2. Effect of Re for particles with inertia

Figures 5–7 show the results for different Re �from
kN /k1=185 to 2000� at a given St, St=1, and for different
initial separations either smaller or larger than the Kolmog-
orov length scale. The time evolution of the triangle’s size
and shape factors for different initial separations are shown
in Figs. 5 and 6 for �0 /L1=0.0005, which corresponds to a
case where ���, and in Fig. 7 for �0 /L1=0.032 and
�0 /L1=0.5, which are cases where ���.

All the curves of 
R2�1/2 and 
W� for a constant value of
�0 /L1=0.032 and �0 /L1=0.5, shown in Fig. 7, approxi-
mately collapse. This result was obtained in the case of dif-
fusion in �2�. However, for �0 /L1=0.0005, where the initial
separation between the heavy particles is smaller than the
Kolmogorov length scale, the curves of 
R2�1/2 and 
W� do
not collapse �as shown in Figs. 5 and 6�.

We extend the results in �2� to three-heavy-particle disper-
sion for St in the range 0.2
St
1 at a zero drift velocity
and for inertial range 185
kN /k1
2000. However, we limit
this result to initial separations above the Kolmogorov length
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scale only. We also find that as the initial triangle size in-
creases the shape distortion becomes weaker. When the ini-
tial triangle size becomes comparable to the largest length
scale L1 ��0�0.5L1�, Fig. 7, we find that the parameters
describing the shape change decrease from their initial values
to their asymptotic values directly, without passing through a
minimum value, in contrast to what is seen for smaller initial
triangle sizes ��0�0.5L1�.

3. The Lagrangian autocorrelation function in the presence
of a particle with inertia

In this section, we use KS to produce the Lagrangian
autocorrelation function of the three-heavy-particle set to
measure the effect of particle inertia on the correlation func-
tion for the triangle area A. The normalized Lagrangian au-
tocorrelation functions for the three-heavy-particle set area
and size are calculated as follows:
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FIG. 9. Relation between St and the normalized time at which
the Lagrangian correlation functions collapse.
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R�t,
� = 
A�t + 
�A�t��/
A2�t�� �21�

and plotted as functions of the normalized time lag in order
to find the time after which the normalized curves collapse.
Figure 8 shows that this has happened after t / td�4.

From Fig. 8, the correlation time for the triangle size is
found to be CS=0.58 at a St of 1 for a three-heavy-particle
set, which indicated that the particles in the set remember
about 0.58 of their history; this value slightly differs from the
one obtained by �2� where it was CS=0.65 for a three-
particle set of the fluid element case. The correlation time for
the triangle area at the same St is found to be CA=0.32,
which indicates that the set remembers about 0.32 of its his-
tory. This can be explained as the area order of magnitude is
the square of the triangle size, so one would expect two-
dimensional information to be lost faster than one dimen-
sional. More precisely, Fig. 9 shows the time t / td after which
the curves for the area correlation collapse, as a function of
St.

This time is clearly an increasing function of St. So with
more inertia the triangle takes longer to forget its initial con-
figuration. In other words, at the time at which the curves
collapse, that is, when the particles in the set have forgotten
their initial separations, the Richardson regime can start, and,
as observed before, we can conclude that this regime is de-
layed as St increases. We can conclude that these two corre-
lation times do not depend significantly on the inertia in the
range 0�St
2.

B. Effect of particle gravity on a three-heavy-particle set

In this section, we study the effect of gravity on the dis-
persion of three heavy particles initially released on an equi-
lateral triangle. In practice, we change the drift velocity pa-
rameter � by changing the turbulent flow parameters and St
is set to St=0.02 and 2.

10
−4

10
−2

10
0

10
2

10
0

10
1

10
2

t/t
d

〈R
2 〉1/

2

γ = 0.4
γ = 0.8
γ = 1
γ = 2

γ

(a)

0 5 10 15 20 25 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t/t
d

〈W
〉

γ = 0.4
γ = 0.8
γ = 1
γ = 2

γ

(b)
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triangle shape factor 
W�, for particles with a drift velocity for St
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FIG. 13. Time evolution of the triangle size for St=0.02: �a�
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1. Effect of varying the particle drift velocity for a given
initial separation

The evolution of the size and shape of an initially equi-
lateral triangle immersed in isotropic turbulence is studied
when the drift velocity is varied, 0.2
�
2, at two particle
inertias, St=0.02 and 2, and for a fixed initial separation
�0 /�. The triangle’s size and shape factors are plotted as
functions of the time, normalized by the largest eddy turn-
over time, for the particle drift velocities 0.2
�
2 and St
=0.02, in Fig. 10 �initial separation �0 /�=92.5� and Fig. 11
�initial separation �0 /�=500�. In Fig. 13 below, the trian-
gle’s size and shape factors are plotted as functions of the
time normalized by the largest eddy turnover time for the
same particle drift velocities 0.4
�
2, St=2, and an initial
separation �0 /�=92.5 in the same inertial subrange.

For a given initial separation, when the particle drift ve-
locity increases, Figs. 10�a� and 11�a�, the triangle’s size is

reduced, indicating smaller separations between the trian-
gle’s vertices. This happens because the increase of the grav-
ity effect makes the particles stay together for longer times.
A similar effect is observed in Figs. 10�b� and 11�b� for the
shape factors 
W� and 
I2�: with the increase of the particle
drift velocity, it takes more time for the shape factor to reach
its asymptotic value. Overall, the more gravity, the more
memory there is for the triangle in terms of either size or
shape. From Fig. 12, it can be seen that for the same drift
velocity the shape factor reaches its asymptotic value faster
when the inertia increases.

C. Effect of Re for particles with gravity

We study the effect of changing Re in the presence of
gravity. The time evolution of the triangle’s size and shape
factor for different initial separations ��0 /L1=0.0005, 0.032,
and 0.5� are plotted for different drift velocities and different
St. All the curves of 
R2�1/2 and 
W� for a constant value of
�0 /L1=0.032 and �0 /L1=0.5, shown in Figs. 13–15, col-
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FIG. 14. Time evolution of the triangle shape factor 
W� for
St=0.02: �a� �=0.2, top curves �0 /L1=0.5 �cases H2, P2, and W2
in Table II�, bottom curves �0 /L1=0.032 �cases F2, N2, and U2 in
Table II�; �b� �=1, top curves �0 /L1=0.5 �cases K2, R2, and X2 in
Table II�, bottom curves �0 /L1=0.032 �cases G2, O2, and V2 in
Table II�.
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lapse for a drift velocity in the range of 0.2
�
2 at two
different St, St=0.02 and 2. These plots corresponds to dif-
ferent Re, but in all cases presented there �0��. However,
for the value of �0 /L1=0.0005, shown in Fig. 16, where the
initial separation between the heavy particles lies below the
Kolmogorov length scale, the curves of 
R2�1/2, 
W�, and 
��
do not collapse.

Hence, we can conclude that Re has no effect on the size
or shape of the triangle provided that the initial separation is
larger than the Kolmogorov length scale. What matters is the
portion L /�0 of the inertial range that is contained in the
initial triangle. This result has been known for fluid particles
�2� but it was not obvious that it could be generalized to
particles with inertia in the presence of gravity. So we can
extend the results obtained in �2� for three fluid particles to
three heavy particles, for particle drift velocities in the range
of 0.2
�
2, St in the range 0.02
St
2, and inertial
ranges 185
kN /k1
2000, if the particles were initially
separated by more than a Kolmogorov length scale �; then
the size and shape of the triangle is independent of Re but a
function of L /�0.
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FIG. 16. Time evolution of �a� the triangle size and �b� the shape
factor 
��, for initial separation �0 /L1=0.0005, for particles with a
drift velocity �for cases A2, M2, and T2 in Table II�.
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1. The Lagrangian autocorrelation function in the presence
of a particle with drift

KS is used to produce the Lagrangian correlation function
of the three-heavy-particle set for the triangle normalized
size R and the normalized triangle area A, Fig. 17. Figure 18
shows t / td after which the curves for the area correlation
collapse as a function of the particle’s drift velocity. The
correlation time for the triangle size is found to be CS
=0.62 �at the particle drift velocity �=0.2�, indicating that
the set vertices remember about 0.62 of their history, while

TABLE IV. Comparisons of the values for the shape factors for
three-particle sets.

Coefficient KS KS DNS simulation Gaussian

with
inertia

without
inertia �2�

without
inertia �4�

values


I2
th�asy 0.21 0.215 0.21 0.222
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V�, for particles with inertia �cases G1, H1, I1,
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the correlation time for the triangle area is found to be CA
=0.35 for the three-heavy-particle set, which indicates that
the set also remembers about 0.35 of its history; these two
times are found to be independent of the particle drift
velocity �.

IV. RESULTS FOR FOUR-HEAVY-PARTICLE SETS

The effect of particle inertia and drift velocity on four-
heavy-particle sets for different initial separations and differ-
ent inertial ranges is presented here. The calculations are
made for four-heavy-particle sets with different inertia �dif-
ferent St� with and without the gravity effect �different par-
ticle drift velocities�, for different initial separations between
the four particles and different inertial subranges of the tur-
bulent flow field. The results obtained are in agreement with
the general behavior observed in �2� for the case of diffusion.

A. Effect of particle inertia on a four-heavy-particle set

We first study the effect of the particle inertia �changing
St values� in the absence of gravity ��=0�. The tetrahedron
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FIG. 22. Lagrangian correlation function of the normalized tet-
rahedron volume 
V� at different times, �a� for case B1 in Table I
and �b� for case C1 in Table I.
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FIG. 24. Time evolution of �a� the tetrahedron size and �b� the
tetrahedron volume for particles with drift, St=0.02, �0 /�=92.5,
and kN /k1=185 �cases H2, I2, J2, K2, and L2 in Table II�; from top
to bottom �=0.2, 0.4, 0.8, 1, and 2.
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size 
R2�1/2 and volume 
V� are monitored as functions of
time by computing their time evolution for different particle
inertias. The change in the tetrahedron’s shape is measured
using the parameter 
I2

th� as a function of time.

1. Effect of varying St for a given initial separation

In this section, the effect of the particle inertia on the
dispersion of the four heavy particles is studied for a given
initial separation �0 /�=16 and a zero drift velocity. In Figs.
19 and 20, the evolution of the tetrahedron’s size and shape
is plotted for particles with inertia for different St.

The effect of varying St at the same initial separation on
the tetrahedron’s size can be seen in Fig. 19: when St in-
creases the time needed before starting the Richardson re-
gime is changed, and this duration increases with St. The
effect of varying St, at a given initial separation, on the tet-
rahedron’s shape can be seen in Fig. 20. When St increases,
the local-minimum departure from the asymptotic value of

the shape factor decreases. At large times, approximately at
t / td=18, it directly reaches its asymptotic value without
passing through a local minimum, 
I2

th�asy=0.215, in Fig. 20,
which is in good agreement with the results from literature,
Table IV. We can therefore extend the domain of validity of
the values obtained in �4� and �2� for the dispersion of a
four-heavy-particle set to St in the range 0.2
St
2, at zero
drift velocity.

2. Effect of the Re for particles with inertia

The results obtained for the tetrahedron’s volume are plot-
ted in Fig. 21 for two different initial separations, �0 /L1
=0.032 and 0.5, St=1, and different Re. In all cases �0��.

All the curves for 
V� and 
I2
th�, for the two initial separa-

tions, collapse for the different Re. This result was obtained
for the same case of four-particle sets in diffusion �2�. We
can therefore extend it to the four-heavy-particle set disper-
sion for St in the range of 0.2
St
1 at a zero drift velocity
for inertial ranges 185
kN /k1
2000, and provided that �
��.
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FIG. 25. Time evolution of �a� the tetrahedron size and �b� the
tetrahedron volume for particles with drift, St=2, �0 /�=92.5, and
kN /k1=185 �cases H2, I2, J2, K2, and L2 in Table II�; from top to
bottom �=0.2, 0.4, 0.8, 1, and 2.
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FIG. 26. Time evolution of the tetrahedron shape factor 
I2
th�: �a�

St= �a� 0.02 and �b� 2, �0 /�=92.5, and kN /k1=185 �cases H2, I2,
J2, K2, and L2 in Table II�; from bottom to top �=0.2, 0.4, 0.8, 1,
and 2.
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3. The volume autocorrelation function in the presence
of a particle with inertia

Lagrangian correlation functions for tetrahedrons in fluid
diffusion were introduced in �2�. Here, we use KS to produce
the Lagrangian correlation function of the tetrahedron vol-
ume �Fig. 22�, but for four heavy particles to address the
effect of the particle inertia. The correlation �e.g., for the
volume� is defined as follows:

R�t,
� = 
V�t + 
�V�t,0��/
V2�t,0�� . �22�

Figure 23 shows the time t / td after which the curves for the
volume correlation collapse. The figure indicates a linear re-
lation between this time and St. The correlation time is found
to be CV=0.21, which indicates that the set remembers about
0.21 of its history; this value is found to be constant and does
not depend on St.

B. Effect of particle drift velocity on a four-heavy-particle set

In this section, we consider the effect of gravity in the
presence of particle inertia on the dispersion of four-heavy-
particle sets. The evolution of the size and geometry of an
initially equilateral tetrahedron is presented. The volume of
the tetrahedron is recorded as a function of time by comput-
ing the evolution of 
V� and the changes in the tetrahedron’s
shape are measured using the parameter 
I2

th� as functions of
time.

1. Effect of varying the drift velocity for a given initial
separation

The evolution of the size and geometry of an initially
equilateral tetrahedron immersed in an isotropic turbulent
flow are studied for a given drift velocity at a fixed particle
inertia �St� and fixed initial separation. The evolution of the
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FIG. 27. Time evolution of the tetrahedron volume 
V� for dif-
ferent Re: �a� �0 /L1=0.032, top curves �=0.2 �cases F2, N2, and
U2 in Table II�, bottom curves �=1 �cases G2, O2, and V2 in Table
II�; �b� �0 /L1=0.5, top curves �=0.2 �cases H2, P2, and W2 in
Table II�, bottom curves �=1 �cases K2, R2, and X2 in Table II�.
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FIG. 28. Time evolution of the tetrahedron shape factor 
I2
th� for

different Re �a� �=0.2; top curves for an initial separation �0 /L1

=0.5 �cases H2, P2, and W2 in Table II�, bottom curves for an
initial separation �0 /L1=0.032 �cases F2, N2, and U2 in Table II�;
�b� �=1; top curves for an initial separation �0 /L1=0.5 �cases K2,
R2, and X2 in Table II�, bottom curves for an initial separation
�0 /L1=0.032 �cases G2, O2, and V2 in Table II�.
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tetrahedron size and shape are plotted in Figs. 24 and 26 for
different cases.

Figure 25 shows that at a given time, when the drift co-
efficient increases, the tetrahedron size is reduced indicating
lower separations within the tetrahedron vertices. This is be-
cause the increase in the weight makes the particles move
faster in the direction of the gravity, making them bypass
part of the turbulent flow structures.

For the shape factor, Fig. 26, it can be noticed that when
the drift coefficient decreases the shape factor reaches its
asymptotic value faster. Whereas, when inertia increases
�Fig. 26�b�� �St=2� the effect of increasing the drift cannot
be counteracted. In this case the tetrahedron can get more
distorted because it faces the combined effect of inertia,
which tends to move the particles apart from the fluid ele-
ment trajectories by the centrifugal effect, and of gravity,
which tends to move the particles faster in the vertical direc-
tion. The resulting effect is a faster convergence to the
Gaussian asymptotic values for the size and shape factor.

2. Effect of Re for particles with gravity

The effect of Re in the presence of gravity is studied at a
given drift velocity and for the two initial separations
�0 /L1=0.5 and 0.032. All the curves for 
V� and 
I2

th�, for
each separation �0 /L1=0.032 and 0.5, as shown in Figs. 27
and 28, collapse for a drift coefficient 0.2
�
2.0 at St
=0.02. These results are in agreement with those obtained in
Sec. III for inertia only and also with those obtained for
four-fluid-particle diffusion �2�. We can therefore extend
these results to the heavyparticle tetrahedron to drift veloci-
ties in the range 0.2
�
2, St=0.02, and inertial ranges
185
kN /k1
2000.

3. Volume autocorrelation function in the presence
of particles with gravity

Here, we study the effect of gravity on the Lagrangian
correlation function of heavy particle tetrahedron volume
�Fig. 29�. Figure 30 shows t / td, the normalized time after
which the curves for the volume correlation collapse as a
function of the particle’s drift velocity. The correlation time
is found to be CV=0.22 for a heavy particle tetrahedron,
which indicates that the set remembers about 0.22 of its his-
tory; this factor is found to be constant and does not depend
on the particle drift velocity �.

V. CONCLUSION

In this paper, we study the effects of the particle inertia
and weight on the dispersion of three- and four-heavy-
particle sets in homogeneous isotropic turbulent flows. We
follow the evolution of the size and shape of initially equi-
lateral sets for different values of Re.

We can conclude that Re has no effect on the size or shape
of heavy particle triangles or tetrahedrons, provided that the
initial separation is larger than the Kolmogorov length scale.
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FIG. 29. Lagrangian correlation function of the tetrahedron vol-
ume: �a� case B2 in Table II and �b� case C2 in Table II at different
times.
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What matters is the portion L /�0 of the inertial range that is
contained in the initial triangle or tetrahedron. This result has
been known for fluid particles �2� but it was not obvious that
it could be generalized to particles with inertia in the pres-
ence of gravity. Our results show that inertia has no effect on
the asymptotic values of the shape factor for heavy particle

triangles or tetrahedrons for St in the range 0.2
St
2, drift
velocities in the range 0.2
�
2, and inertial subranges
185
kN /k1
2000. We can extend the validity of the values
obtained in �2� �0.66 for 
W�, 0.16 for 
I2�, and 0.26 for 
���
to the dispersion of three-heavy-particle sets in the case of
varying St at a zero drift velocity.
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